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1. Introduction

With idealized boundary conditions, such as Dirichlet and Neumann boundary conditions,

vacuum energy calculations have cut-off dependent terms that diverge in the limit as the

cut-off Λ tends to infinity. These divergences can be classified as either bulk (volume)

divergences or lower-dimensional surface divergences (for simplicity, all divergences besides

the volume divergence will be classified as hypersurface or simply surface divergences re-

gardless of the dimension). The volume divergence poses no problems since the Casimir

energy, by definition, is obtained after subtracting out the volume divergence from the

vacuum energy. In other words, the volume divergence is renormalizable and can be set to

zero by simply adding a constant counterterm to the Hamiltonian. In contrast, the surface

divergences are nonrenormalizable. It is tempting to throw out the surface divergence as

an artifact of idealized boundary conditions and retain the finite part as the true Casimir

energy as is often done in the literature (see references in [4]). However, this is not a phys-

ically valid renormalization procedure. It has been shown that these surface divergences

cannot be removed via renormalization of any physical parameters of the theory [1 – 3]. In

the zeta-function regularization technique, these surface divergences do not appear because
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in effect they are renormalized to zero.1 In special cases, like the parallel plate geometry

with infinite plates, this is not an issue because in the limit as Λ → ∞ the Casimir force

is finite. However, in any realistic situation where the plates are of finite size, the Casimir

force diverges in the limit Λ → ∞.

Unambiguous Casimir calculations can be carried out with idealized boundary condi-

tions in the apparatus called the Casimir piston. A few years ago, Cavalcanti [5] showed

for the case of a two-dimensional (2+1) massless scalar field confined to a rectangular

region with Dirichlet boundary conditions that the Casimir piston can resolve the issue

of nonrenormalizable surface divergences that appear in Casimir calculations. A Casimir

piston contains an interior and an exterior region and Cavalcanti showed explicitly that the

surface cut-off terms of the interior and exterior regions canceled. He also showed that the

Casimir force on the piston is always negative regardless of the ratios of the two sides of the

rectangular region. This is in contrast to calculations that can yield positive Casimir forces

in rectangular geometries when the surface cut-off terms are thrown out and no exterior

region is considered (see references in [4]).

In this paper, we use a multidimensional cut-off technique [6] to obtain exact expres-

sions for the cut-off dependent (Λ-dependent) part of the Casimir energy for a d-dimensional

parallelepiped region. In the limit Λ→∞, these yield nonrenormalizable hypersurface di-

vergences and we show explicitly that they cancel out in the Casimir piston scenario for

any dimension. We then derive exact expressions for the Casimir force on the piston in any

dimension d and use the invariance of the vacuum energy under permutations of lengths

to derive an alternative expression. When the plate separation a is large, an otherwise

long computation using the first expression becomes trivial using the alternative expres-

sion and vice versa when a is small (there is a useful a → 1/a duality). As in two and

three dimensions, the Casimir force on the piston is attractive (negative) in any spatial

dimension d.

For the three-dimensional Casimir piston with massless scalar fields obeying Dirichlet

and Neumann boundary conditions approximate results were first obtained in [7] for small

plate separation. Exact results for arbitrary plate separation were then obtained for the

Dirichlet case in [8]. Exact results for the 3D Neumann (as well as Dirichlet) case were

recently obtained via an optical path technique [12]. In [12], arbitrary cross sections,

temperature and free energy were also studied. We apply our d-dimensional formulas (both

expressions) to the 2D and 3D Neumann cases. The first 3D expression looks similar in form

to the one recently derived in [12] and is in numerical agreement with it. The alternative

3D expression converges quickly when a is large and though it is quite different in form

compared to the first expression or the one found in [12] it is in numerical agreement with

both of them. The 2D Neumann results are new and bring a completeness to the original

work of Cavalcanti [5] where the 2D Dirichlet case was considered. Before discussing the

literature on Casimir pistons for the electromagnetic case, it is worth noting that the

use of massless scalar fields in Casimir studies goes beyond theoretical interest and has

1Like dimensional regularization, zeta-function regularization goes beyond pure regularization and does

some renormalization.
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direct application to physical systems such as Bose-Einstein condensates [18 – 20]. Higher-

dimensional scalar field Casimir calculations have also been carried out in the context of

6D supergravity theories [21].

For perfect-conductor conditions, the Casimir piston for the electromagnetic field in a

three-dimensional rectangular cavity was studied in [7] and the Casimir force on the piston

was found to be attractive in contrast to results without exterior region where the force

could be positive. This was then generalized further in refs. [9]–[12] where the temperature

and free energy dependence was studied. It was shown in [13] that the Casimir force

between two bodies related by reflection is always attractive, independent of the exact

form of the bodies or dielectric properties and this was generalized further in [14]. It

has also been shown that Casimir piston scenarios can yield repulsive forces. The Casimir

piston for a weakly reflecting dielectric was considered in [15] and it was shown that though

attraction occurred for small plate separation, this could switch to repulsion for sufficiently

large separation. However, the force remained attractive for all plate separations if the

material was thick enough, in agreement with the results in [7]. Two preprints [16, 17]

also discuss scenarios where repulsive Casimir forces in pistons can be achieved. Recently,

two independent groups [22, 23] have developed techniques for calculating Casimir forces

between arbitrary compact objects.

2. Cancellation of hypersurface divergences in the d-dimensional Casimir

piston

The expression for the vacuum energy Ẽ regularized using a multidimensional cut-off tech-

nique [6] divides naturally into two parts: a finite part E0 and a cut-off dependent part

E(Λ) which diverges as the cut-off Λ tends to infinity. The expressions for E(Λ) and E0 are

derived in appendix A and are written in a compact fashion with the help of the ordered

symbol ξd
k1...kj

which was introduced in [8] and is defined below after the expressions for

E(Λ) are written. Our goal in this section is to show that for the Casimir piston scenario,

the hypersurface divergences of the interior and exterior regions of the piston cancel out

for any dimension d. By “cancel out” we do not mean that the cut-off dependent part of

the Casimir energy is zero but that it is independent of the plate separation a so that the

Casimir force on the piston has no cut-off dependence. In the next section we focus on the

finite part E0 and obtain explicit expressions for the Casimir force on the piston in any

dimension. We work in units where ~=c=1.

The regularized vacuum energy for massless scalar fields in a d-dimensional box with

sides of arbitrary lengths L1, L2, . . . , Ld obeying Dirichlet (D) boundary conditions is given

by (A.24) (as Λ → ∞)

ẼD = E0D
+ ED(Λ) (2.1)

where E0D
is the finite part for the Dirichlet case and ED(Λ) is the cut-off dependent part

– 3 –
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given by (A.12):

ED(Λ) ≡
1

2d+1

d
∑

m=1

(−1)d+m m 2m π
m+1

2 Γ

(

m + 1

2

)

Λm+1 ξ d
k1,...,km

m
∏

i=1

Lki

=
1

2d+1

d
∑

m=1

(−1)d+m m 2m π
m+1

2 Γ

(

m + 1

2

)

Λm+1 ξ d
k1,...,km

(Lk1
. . . Lkm

).

(2.2)

For the case of Neumann(N) boundary conditions the regularized vacuum energy is given

by (A.20) (as Λ → ∞)

ẼN = E0N
+ EN (Λ) (2.3)

where E0N
is the finite part and EN (Λ) is the cut-off dependent part given by (A.13):

EN (Λ) ≡
1

2d+1

d
∑

m=1

m 2m π
m+1

2 Γ

(

m + 1

2

)

Λm+1 ξ d
k1,...,km

m
∏

i=1

Lki

=
1

2d+1

d
∑

m=1

m 2m π
m+1

2 Γ

(

m + 1

2

)

Λm+1 ξ d
k1,...,km

(Lk1
. . . Lkm

).

(2.4)

In this section, the expressions for E0D
and E0N

are not needed.

There is an implicit summation over the integers ki in (2.2) and (2.4). The ordered

symbol ξd
k1,...,km

[8] is defined by

ξ d
k1,...,km

=

{

1 if k1 <k2 <. . .< km ; 1 ≤ km ≤ d

0 otherwise .
(2.5)

The ordered symbol ensures that the implicit sum over the ki is over all distinct sets

{k1, . . . , km}, where the ki are integers that can run from 1 to d inclusively under the

constraint that k1 <k2 < · · ·< km. The superscript d specifies the maximum value of km.

For example, if m = 2 and d = 3 then ξ d
k1,...,km

= ξ 3
k1,k2

and the non-zero terms are ξ 1,2 ,

ξ 1,3 and ξ 2,3. This means the summation is over {k1, k2} = (1, 2), (1, 3) and (2, 3) so that

ξ 3
k1,k2

Lk1
Lk2

= L1 L2 + L1 L3 + L2 L3.

2.1 Cancellation in three dimensions

Before showing how the cut-off dependent hypersurface divergences in the d-dimensional

Casimir piston cancel, we consider the case of three spatial dimensions first. Three dimen-

sions allows us to make the first non-trivial use of the d-dimensional cut-off expressions (2.2)

and (2.4) and to illustrate in a transparent fashion how the cancellation occurs. This paves

the way to follow the cancellation in d-dimensions in the next subsection. The cut-off

expressions in three dimensions and their cancellation in the piston scenario are in agree-

ment with the work in [7, 12] and this provides an independent confirmation of our general

formulas.
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In three dimensions, the Dirichlet and Neumann cut-off expressions ED(Λ) and EN (Λ),

are obtained by substituting d = 3 in equations (2.2) and (2.4):

ED(Λ) =
1

24

3
∑

m=1

(−1)3+m m 2m π
m+1

2 Γ

(

m + 1

2

)

Λm+1 ξ 3
k1,...,km

(Lk1
. . . Lkm

) (2.6)

=
π

8
Λ2(L1 + L2 + L3) −

π2

4
Λ3(L1 L2 + L1 L3 + L2 L3) +

3π2

2
Λ4 L1 L2 L3

EN (Λ) =
1

24

3
∑

m=1

ξ 3
k1,...,km

(Lk1
. . . Lkm

)m 2m π
m+1

2 Γ

(

m + 1

2

)

Λm+1 (2.7)

=
π

8
Λ2(L1 + L2 + L3) +

π2

4
Λ3(L1 L2 + L1 L3 + L2 L3) +

3π2

2
Λ4 L1 L2 L3 .

Except for a trivial redefinition of Λ → Λ/π, the above cut-off expressions in three dimen-

sions are in agreement with those derived in [12]. The Λ4 term appearing in (2.6) and (2.7)

is multiplied by the volume L1 L2 L3 of the box and represent the volume divergence of the

continuum. This volume term poses no divergence problems since it must be subtracted

to obtain the Casimir energy (defined as the difference between the vacuum energy with

boundaries and the bulk vacuum energy of the continuum). In other words, it can be

renormalized to zero via a constant counterterm in the Hamiltonian. The remaining Λ2

and Λ3 terms are proportional to the perimeter and surface area respectively (we refer to

both as surface divergences for simplicity). In contrast to the volume divergence, there is

no physical justification for subtracting out the surface divergences. In other words, they

cannot be renormalized to zero.

For the Casimir piston, the Casimir energy is obtained by adding the vacuum energy of

the interior region I and exterior region II (see figure 1). To obtain the cut-off dependence

for the Casimir energy we therefore add the cut-off terms (the surface divergences) in

regions I and II. Let the plate separation be a.

In region I, the three lengths are L1 = a, L2 = b and L3 = c whereas in region II the

three lengths are L1 = s − a, L2 = b and L3 = c. Note that in region I, L1 comes with

+ a whereas in region II, L1 comes with the opposite sign − a. For Dirichlet boundary

conditions we obtain

EDpiston
(Λ) =ED1

(Λ) + ED2
(Λ)

=
π

8
Λ2(a + b + c) −

π2

4
Λ3(a b + a c + b c)

+
π

8
Λ2

(

s − a + b + c
)

−
π2

4
Λ3

(

(s − a) b + (s − a) c + b c
)

=
π

8
Λ2(s + 2 b + 2 c) −

π2

4
Λ3(s b + s c + 2 b c)

(2.8)

– 5 –
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Figure 1: Casimir piston in three dimensions.

and for Neumann boundary conditions we obtain

ENpiston
(Λ) =EN1

(Λ) + EN2
(Λ)

=
π

8
Λ2(a + b + c) +

π2

4
Λ3(a b + a c + b c)

+
π

8
Λ2

(

s − a + b + c
)

+
π2

4
Λ3

(

(s − a) b + (s − a) c + b c
)

=
π

8
Λ2(s + 2 b + 2 c) +

π2

4
Λ3(s b + s c + 2 b c) .

(2.9)

Both EDpiston
(Λ) and ENpiston

(Λ) have no dependence on the plate separation a. This is

due to a cancellation that has occurred between region I and II. The Casimir force on

the piston has therefore no dependence on the cut-off Λ (since the partial derivative with

respect to a of EDpiston
(Λ) and ENpiston

(Λ) is zero).

2.2 Cancellation in d dimensions

In a d-dimensional Casimir piston, the piston has d−1 dimensions and divides again the

volume into two regions: an interior region I and exterior region II. Without loss of gener-

ality, the direction in which the piston moves is chosen to be along the L1 direction so that

region I and II share the same lengths except for L1. It is therefore convenient to write

the Dirichlet and Neumann cut-off expressions (2.2) and (2.4) as a sum of two terms: one

– 6 –
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that includes L1 and another which is independent of L1 i.e.

ED(Λ) =
1

2d+1

d
∑

m=1

(−1)d+m m 2m π
m+1

2 Γ

(

m + 1

2

)

Λm+1

(

L1 ξ d
1, k2,...,km

m
∏

i=2

Lki

+ξ d
k1,...,km

k1 6=1

m
∏

i=1

Lki

)

=
1

2d+1

d
∑

m=1

(−1)d+m f(m)

(

L1 ξ d
1, k2,...,km

m
∏

i=2

Lki
+ ξ d

k1,...,km

k1 6=1

m
∏

i=1

Lki

)

(2.10)

where f(m) ≡ m 2m π
m+1

2 Γ(m+1
2 ) Λm+1. The Neumann cut-off expression is given by

EN (Λ) ≡
1

2d+1

d
∑

m=1

f(m)

(

L1 ξ d
1, k2,...,km

m
∏

i=2

Lki
+ ξ d

k1,...,km

k1 6=1

m
∏

i=1

Lki

)

. (2.11)

Let the plate separation be a. In region I, L1 = a and in region II, L1 = s − a (the piston

splits the length s into a and s − a along the L1 direction) (see figure 1). To obtain the

cut-off dependence for the d-dimensional Casimir piston we need to add the contributions

from regions I and II:

EDpiston
(Λ) ≡ ED1

(Λ) + ED2
(Λ) (2.12)

=
1

2d+1

d
∑

m=1

(−1)d+m f(m)

(

a ξ d
1, k2,...,km

m
∏

i=2

Lki
+ ξ d

k1,...,km

k1 6=1

m
∏

i=1

Lki

)

+
1

2d+1

d
∑

m=1

(−1)d+m f(m)

(

(s − a) ξ d
1, k2,...,km

m
∏

i=2

Lki
+ ξ d

k1,...,km

k1 6=1

m
∏

i=1

Lki

)

=
1

2d+1

d
∑

m=1

(−1)d+m f(m)

(

s ξ d
1, k2,...,km

m
∏

i=2

Lki
+ 2 ξ d

k1,...,km

k1 6=1

m
∏

i=1

Lki

)

(2.13)

and

ENpiston
(Λ) ≡ EN1

(Λ) + EN2
(Λ) (2.14)

=
1

2d+1

d
∑

m=1

f(m)

(

a ξ d
1, k2,...,km

m
∏

i=2

Lki
+ ξ d

k1,...,km

k1 6=1

m
∏

i=1

Lki

)

+
1

2d+1

d
∑

m=1

f(m)

(

(s − a) ξ d
1, k2,...,km

m
∏

i=2

Lki
+ ξ d

k1,...,km

k1 6=1

m
∏

i=1

Lki

)

=
1

2d+1

d
∑

m=1

f(m)

(

s ξ d
1, k2,...,km

m
∏

i=2

Lki
+ 2 ξ d

k1,...,km

k1 6=1

m
∏

i=1

Lki

)

.

The cut-off expressions for the piston, EDpiston
(Λ) and ENpiston

(Λ), have no dependence on

the plate separation a. Their derivatives with respect to a is zero which implies that the

Casimir force on the piston has no cut-off dependence in any dimension d. The hypersurface

divergences have cancelled out in all dimensions in the Casimir piston scenario.

– 7 –
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3. Casimir force formulas in the d-dimensional Casimir piston

Having proved the cancellation of hypersurface divergences in the d-dimensional Casimir

piston, we now focus on the finite (Λ-independent) part of the Casimir energy. The finite

part is conveniently expressed as a sum of two terms: an analytical term composed of a

finite sum over Riemann zeta and gamma functions and a remainder term Rj composed of

infinite sums over modified Bessel functions (though convergence is reached after summing

a few terms). In appendix A we derive exact expressions for the finite part E0N
and E0D

of the Casimir energy in d dimensions for Neumann and Dirichlet boundary conditions re-

spectively. In this section, we state these expressions and use them to obtain the Neumann

and Dirichlet Casimir force FN and FD for the d-dimensional Casimir piston. In appendix

B we develop alternative expressions for the Casimir force (see discussion at the end of this

section).

The finite part of the d-dimensional Casimir energy for Neumann and Dirichlet bound-

ary conditions, E0N
and E0D

, is given by (A.21) and (A.25) respectively:

E0N
= −

π

2d+1

d
∑

m=1

m−1
∑

j=0

2d−m ξ m−1
k1,...,kj

Lk1
. . . Lkj

(Lm)j+1

(

Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) + RNj

)

(3.1)

where the remainder RNj
is given by (A.22)

RNj
=

∞
∑

n=1

∞
∑′

ℓi=−∞
i=1,...,j

2 n
j+1

2

π

K j+1

2

(

2π n

√

(

ℓ1
Lk1

Lm

)2
+ · · · +

(

ℓj
Lkj

Lm

)2
)

[

(

ℓ1
Lk1

Lm

)2
+ · · · +

(

ℓj
Lkj

Lm

)2
]

j+1

4

, (3.2)

and

E0D
=

π

2d+1

d−1
∑

j=0

(−1)d+j ξ d−1
k1,...,kj

Lk1
. . . Lkj

(Ld)j+1

(

Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) + RDj

)

(3.3)

where RDj
is given by (A.26):

RDj
=

∞
∑

n=1

∞
∑′

ℓi=−∞
i=1,...,j

2 n
j+1

2

π

K j+1

2

(

2π n

√

(

ℓ1
Lk1

Ld

)2
+ · · · +

(

ℓj
Lkj

Ld

)2
)

[

(

ℓ1
Lk1

Ld

)2
+ · · · +

(

ℓj
Lkj

Ld

)2
]

j+1

4

. (3.4)

The prime on the sum in (3.2) and (3.4) means that the case when all ℓ’s are simultaneously

zero (ℓ1 = ℓ2 = . . . = ℓj = 0) is to be excluded. There is an implicit summation over the ki’s

via the ordered symbol ξ k1,...,kj
defined in (2.5). RNj

and RDj
do not depend only on j but

are also a function of the ratios of lengths, for example RNj
= RNj

(Lk1
/Lm, . . . , Lkj

/Lm).

Therefore, the implicit summation over the ki’s applies also to RNj
and RDj

. For j = 0,

RNj
and RDj

are defined to be zero and ξ k1,...,kj
and Lkj

are defined to be unity so that

ξ d−1
k1,...,kj

(Lk1
. . . Lkj

)/(Ld)
j+1 = 1/Ld for j = 0.

– 8 –
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To obtain the d-dimensional Casimir energy in the piston scenario we need to sum the

contributions from region I and region II. In region I, let the length of the sides of the

d-dimensional parallelepiped region be a1, a2, . . . , ad−1, a where a is the plate separation.

In region I, we label the lengths Li such that L1 = a1, L2 = a2, etc. with Ld = a (Ld

is equal to the plate separation). In region II, the length of the sides are the same as in

region I except for the length a which is replaced by the length s − a. The d lengths are

s−a, a1, a2, . . . , ad−1. For region II, we choose to label the lengths Li such that L1 = s−a,

L2 = a1, L3 = a2, . . . , Ld = ad−1. To calculate the Casimir force, we only need to keep

terms in the Casimir energy that depend on the plate separation a: in region I, this means

keeping terms with Ld = a and in region II this means keeping terms with L1 = s − a.

In region I, the a-dependent Casimir energy for Neumann boundary conditions is

obtained by setting m = d so that Lm = Ld = a and setting Lkj
= akj

in (3.1):

E0NI
(a) = −

π

2d+1

d−1
∑

j=0

ξ d−1
k1,...,kj

ak1
. . . akj

aj+1

(

Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) + RINj

)

(3.5)

with RINj
given by

RINj
=

∞
∑

n=1

∞
∑′

ℓi=−∞
i=1,...,j

2 n
j+1

2

π

K j+1

2

(

2π n

√

(

ℓ1
ak1

a

)2
+ · · · +

(

ℓj
akj

a

)2
)

[

(

ℓ1
ak1

a

)2
+ · · · +

(

ℓj
akj

a

)2
]

j+1

4

. (3.6)

A word on notation: the Roman numerals I and II will denote region I and II respectively

while j will be denoted via Arabic numerals 1, 2, 3 etc. e.g. RIN1
means the remainder(R)

for Neumann(N) in region I with j = 1.

The finite part of the Casimir energy for Dirichlet boundary conditions in region I is

obtained by setting Ld = a and Lkj
= akj

in (3.3):

E0DI
=

π

2d+1

d−1
∑

j=0

(−1)d+j ξ d−1
k1,...,kj

ak1
. . . akj

aj+1

(

Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) + RIDj

)

(3.7)

where RIDj
is given by (3.4):

RIDj
=

∞
∑

n=1

∞
∑′

ℓi=−∞
i=1,...,j

2 n
j+1

2

π

K j+1

2

(

2π n

√

(

ℓ1
ak1

a

)2
+ · · · +

(

ℓj
akj

a

)2
)

[

(

ℓ1
ak1

a

)2
+ · · · +

(

ℓj
akj

a

)2
]

j+1

4

. (3.8)

In region II, only terms with L1 = s−a contribute to the a-dependent Casimir energy.

We therefore consider only the cases when k1 is equal to 1 so that Lk1
= s − a. The rest

of the lengths (j > 1) are given by Lkj
= akj−1 so that L2 = a1, L3 = a2, . . . , Lm = am−1.

We are interested in an exterior of infinite length so that the Casimir force in region II is

calculated in the limit s→∞. For Neumann boundary conditions, the case (j = 0,m = 1)

– 9 –
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in (3.1) can be omitted because Lm = L1 = s − a appears in the denominator and yields

a zero Casimir force in the limit of s → ∞. The cases j = 0, m > 1 can also be dropped

because they do not yield any terms with L1 (with j = 0, the numerator is equal to unity

and with m > 1, Lm 6= L1). In region II, the lower limit of the sums in (3.1) therefore

start at j = 1 and m = 2 yielding the following Neumann energy (a-dependent part):

E0NII
(a) = −

π

2d+1

d
∑

m=2

m−1
∑

j=1

2d−m ξ m−1
1,k2,...,kj

(s − a) a
k2−1

. . . a
kj−1

(am−1)j+1
× (3.9)

×

(

Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) + RIINj

)

with

RIINj
=

∞
∑

n=1

∞
∑′

ℓi=−∞
i=1,...,j

2 n
j+1

2

π

K j+1

2

(

2π n

√

(

ℓ1
s−a

am−1

)2
+ · · · +

(

ℓj
akj−1

am−1

)2
)

[

(

ℓ1
s−a

am−1

)2
+ · · · +

(

ℓj
akj−1

am−1

)2
]

j+1

4

. (3.10)

For Dirichlet boundary conditions, the case j = 0 can be dropped from (3.3) because it

does not yield any terms with L1. The sum in (3.3) therefore starts at j = 1 and we set

Lk1
= s − a and Lkj

= a
kj−1

, with Ld = ad−1:

E0DII
(a) =

π

2d+1

d−1
∑

j=1

(−1)d+j ξ d−1
1,...,kj

(s − a) . . . akj−1

(ad−1)j+1

(

Γ(
j + 2

2
)π

−j−4

2 ζ(j + 2) + RIIDj

)

(3.11)

with

RIIDj
=

∞
∑

n=1

∞
∑′

ℓi=−∞
i=1,...,j

2 n
j+1

2

π

K j+1

2

(

2π n

√

(

ℓ1
s−a
ad−1

)2
+ · · · +

(

ℓj
akj−1

ad−1

)2
)

[

(

ℓ1
s−a
ad−1

)2
+ · · · +

(

ℓj
akj−1

ad−1

)2
]

j+1

4

. (3.12)

It is now straightforward to calculate the Casimir forces in each region. The Casimir

force contribution from region I for Neumann is

FNI
= −

∂ E

∂ a
0NI

(a) = −
π

2d+1

d−1
∑

j=0

ξ d−1
k1,...,kj

(ak1
. . . akj

)
j + 1

aj+2
Γ

(

j + 2

2

)

π
−j−4

2 ζ(j +2)−
∂RIN

∂ a

(3.13)

where RIN
is the remainder contribution given by

RIN
= −

π

2d+1

d−1
∑

j=1

ξ d−1
k1,...,kj

(ak1
. . . akj

)

aj+1
RINj

. (3.14)

The corresponding formula for Dirichlet are

FDI
= −

∂E

∂ a
0DI (3.15)

=
π

2d+1

d−1
∑

j=0

(−1)d+j ξ d−1
k1,...,kj

(ak1
. . . akj

)
j + 1

aj+2
Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) −
∂RID

∂a
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with RID
given by

RID
=

π

2d+1

d−1
∑

j=1

(−1)d+j ξ d−1
k1,...,kj

(ak1
. . . akj

)

aj+1
RIDj

. (3.16)

The Casimir force from the exterior region II is obtained in the limit when s tends to

infinity. For the Neumann case one obtains

FNII
= − lim

s→∞

∂

∂ a
E0NII

(a)

= −
π

2d+1

d
∑

m=2

m−1
∑

j=1

2d−m ξ m−1
1,k2,...,kj

a
k2−1

. . . a
kj−1

(am−1)j+1
Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2)

−
π

2d+1

d
∑

m=3

m−1
∑

j=2

2d−m ξ m−1
1,k2,...,kj

a
k2−1

. . . a
kj−1

(am−1)j+1
RIINj

(ℓ1 =0) (3.17)

where we used the result2 − lims→∞
∂

∂ a

[

(s − a)RIINj

]

=RIINj
(ℓ1 =0). RIINj

(ℓ1 =0) means

RIINj
evaluated with ℓ1 =0. Note that the product a

k2−1
. . . a

kj−1
that appears in (3.17) is

identically equal to one for j =1 so that ξ m−1
1,k2,...,kj

(a
k2−1

. . . a
kj−1

)/(am−1)
j+1 = 1/(am−1)

2

for j=1.

For the Dirichlet case one obtains

FDII
= − lim

s→∞

∂

∂ a
E0DII

=
π

2d+1

d−1
∑

j=1

(−1)d+j ξ d−1
1,k2,...,kj

a
k2−1

. . . a
kj−1

(ad−1)j+1
Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2)

+
π

2d+1

d−1
∑

j=2

(−1)d+j ξ d−1
1,k2,...,kj

a
k2−1

. . . a
kj−1

(ad−1)j+1
RIIDj

(ℓ1 =0) . (3.18)

The Casimir force FN and FD on the piston for Neumann and Dirichlet respectively

is finally obtained by adding contributions from both region I and II:

FN = FNI
+ FNII

; FD = FDI
+ FDII

. (3.19)

Eq. (3.19) together with (3.13) and (3.17) for FNI
and FNII

, and (3.15) and (3.18) for FDI

and FDII
respectively constitute our final result for the Casimir force on the piston in d

dimensions.

The modified Bessel functions K j+1

2

that appear in RINj
or RIDj

(eqs. (3.6) and (3.8))

converge exponentially fast if the plate separation a is the smallest of the d lengths because

2− lims→∞

∂

∂ a

ˆ

(s − a) RIINj

˜

= lims→∞ RIINj
− lims→∞ (s − a)

∂

∂ a
RIINj

. The first term yields

RIINj
(ℓ1 = 0) since the modified Bessel functions decrease to zero exponentially in the limit s → ∞ ex-

cept when ℓ1 =0 (as there is no s dependence when ℓ1=0). The second term is zero because the derivative

of the modified Bessel functions with respect to a decrease exponentially to zero in the limit s→∞ when

ℓ1 6= 0. When ℓ1 =0, RIINj
no longer has any dependence on a so that its derivative is zero identically.
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the ratios aki
/a that appear in the argument of the Bessel functions are then greater than

or equal to 1. Only a few terms need to be summed to reach high accuracy and the result is

also small in magnitude. This is why we can call R a remainder. However, RINj
and RIDj

can converge slowly and be large if a is larger than the other lengths. In particular, the

large a limit when aki
/a<< 1 would require a very large number of terms to be summed

before convergence is reached. By making use of the invariance of the vacuum energy

under permutation of lengths, we derive in appendix B alternative expressions that are

more convenient to use when the plate separation a is large. For Neumann and Dirichlet

they are given by (B.10) and (B.13) respectively:

F alt
N = −

π

24 a2
−

∂

∂a
R alt

IN
(ℓ1 6=0) (3.20)

and

F alt
D = −

∂

∂a
R alt

ID
(ℓ1 6=0) (3.21)

where R alt
IN

(ℓ1 6= 0) is given by (B.6) with (B.11) and R alt
ID

(ℓ1 6= 0) is given by (B.8)

with (B.14). The above compact formulas are applied in the next section in two and

three dimensions where one can see explicitly how they are used.

The ratio of lengths that appear in the argument of the modified Bessel functions

in (B.11) and (B.14) have a in the numerator (a/aki
) in contrast to our original expres-

sions (with ratio aki
/a). We have a useful a → 1/a duality: when a is large a long

computation with the original expressions can be trivial using the alternative expressions

and vice versa when a is small. The invariance of the vacuum energy under permutations of

the d lengths was used to derive the alternative expressions and the duality can be traced

to this symmetry. Note that regardless of the size of the plate separation a, we would want

to label the other d−1 lengths such that a1 ≥ a2 ≥ a3 ≥ . . . ≥ ad−1 to reach the quickest

convergence.

The Casimir force on the piston is negative (attractive) in all dimensions for both

Neumann and Dirichlet boundary conditions and ranges from −∞ (in the limit a → 0)

to 0 (in the limit a → ∞). The limit as a → 0 is easily determined using the original

expressions (3.19). In the limit a → 0, FNI
and FDI

given by (3.13) and (3.15) tend to

−1/ad+1 ( ∂RIN
/∂a and ∂RID

/∂a tend to zero). FNII
and FDII

have no dependence on a

so that FN = FNI
+ FNII

and FD = FDI
+ FDII

tend towards −1/ad+1 and hence −∞ as

a → 0. To determine the limit as a →∞, it is easiest to use the alternative expressions.

As already discussed at the end of appendix B, F alt
N and F alt

D given by (3.20) and (3.21)

tend to zero in that limit because the modified Bessel functions that appear in R alt
IN

(ℓ1 6=0)

(eqs. (B.6) and (B.11)) and R alt
ID

(ℓ1 6=0) (eqs. (B.8) and (B.14)) decrease exponentially fast

to zero as a→∞ (since ℓ1 6=0, when a→∞ the argument of the Bessel functions tend to

infinity). The rapid decrease to zero can be seen in the two and three-dimensional plots of

the next section (figure 2 and figure 3).
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4. Application: two and three-dimensional Casimir piston for Neumann

boundary conditions

Exact results for massless scalar fields in the two and three-dimensional Casimir piston for

Dirichlet boundary conditions were first obtained in refs. [5, 8] and recently exact results

for 3D Neumann (as well as Dirichlet) were obtained in [12]. We apply our d-dimensional

formulas (both expressions) to the two and three-dimensional Casimir piston with Neumann

boundary conditions. The 2D Neumann results are new and fill a gap in the literature.

For 3D Neumann, our first expression looks similar in form to the one recently derived

in [12] and is in numerical agreement with it providing an independent confirmation of our

results. Our alternative 3D Neumann expression looks quite different in form from the

first expression and yields the same numerical results but is more useful (converges more

quickly) at large plate separation a.

4.1 Two dimensions

In d dimensions the lengths of the parallelepiped are a, a1, a2, . . . , ad−1 with a being the

plate separation. In two dimensions the lengths are then a and a1 (we set a1 = b so that the

geometry is an a × b rectangle). The Casimir force contribution from region I is obtained

by setting d = 2 in (3.13):

FNI
= −

π

8

1
∑

j=0

ξ1
k1,...,kj

(ak1
. . . akj

)
j + 1

aj+2
Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) −
∂RIN

∂a

= −
π

48 a2
−

ζ(3) b

8π a3
+

1

2

∂

∂a

∞
∑

n=1

∞
∑

ℓ=1

n

ℓ

1

a
K1

(

2π n ℓ b/a
)

(4.1)

where RIN
is obtained from (3.14):

RIN
= −

π

8

b

a2
RIN1

(b/a) = −
1

2

∞
∑

n=1

∞
∑

ℓ=1

n

ℓ

1

a
K1

(

2π n ℓ b/a
)

. (4.2)

RIN1
(b/a) is obtained from (3.6) and means RIN1

is a function of b/a.

The Casimir force contribution from region II is obtained by setting d = 2 in (3.17).

In the first double sum, there is only the term j = 1,m = 2 to consider. The second double

sum is zero (it is nonzero only starting at d = 3). We obtain the simple expression

FNII
= −

ζ(3)

16π b2
. (4.3)

By summing FNI
and FNII

we obtain the Casimir force FN on the piston:

FN = −
π

48 a2
−

ζ(3) b

8π a3
−

ζ(3)

16π b2
+

1

2

∂

∂a

∞
∑

n=1

∞
∑

ℓ=1

n

ℓ

1

a
K1

(

2π n ℓ b/a
)

. (4.4)

As an example, the above expression yields FN = −0.1342935575/b2 for the case of a square

(a = b).
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Figure 2: Neumann Casimir force F versus a/b where a is the plate separation and b the second

side of a two-dimensional rectangular region. The force is in units of 1/b2. The force is negative

with magnitude decreasing quickly to zero as a/b increases.

An alternative expression F alt
N for the Casimir force can be obtained via (3.20). For

d = 2 we obtain

F alt
N = −

π

24 a2
−

∂

∂a
R alt

IN
(ℓ1 6= 0)

= −
π

24 a2
+

1

2 b

∞
∑

n=1

∞
∑

l=1

n

ℓ
K ′

1

(

2π n ℓ a/b
)

(4.5)

where the prime on the modified Bessel function means partial derivative with respect to

a i.e. K ′(x) ≡ ∂
∂aK(x). R alt

IN
(ℓ1 6=0) is obtained from the j =1, m=2 term in (B.6):

R alt
IN

(ℓ1 6= 0) = −
π

8

a

b2
R alt

IN1
(ℓ1 6= 0) = −

1

2 b

∞
∑

n=1

∞
∑

l=1

n

ℓ
K1

(

2π n ℓ a/b
)

. (4.6)

R alt
IN1

(ℓ1 6=0) is obtained from the j =1, m=2 term in (B.11).

The two expressions, (4.4) and (4.5), yield the same value for the Casimir force on the

piston and are valid for any values of a and b. However, computationally, expression (4.4)

is better to use when a is small (i.e. a/b<1), whereas (4.5) is better to use when a is large

(b/a<1). This is the simplest case of the a → 1/a duality that was discussed last section.

The Casimir force on the piston is negative (attractive) and ranges from −∞ (in the

limit a→ 0) to 0 (in the limit a→∞). A plot of F versus a/b (in units of 1/b2) is shown

in figure 2.

– 14 –



J
H
E
P
0
9
(
2
0
0
7
)
0
0
5

4.2 Three dimensions

In d-dimensions we have the d lengths a, a1, a2, . . . , ad−1 with a the plate separation. In

three dimensions the three lengths are then a, a1 and a2. For the three-dimensional Casimir

piston it has become customary to use a, b and c for the lengths and we therefore set a2 = b

and a1 = c. The Casimir force contribution from region I is obtained by setting d = 3

in (3.13)

FNI
= −

π

16

2
∑

j=0

ξ2
k1,...,kj

(ak1
. . . akj

)
j + 1

aj+2
Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) − R′
IN

= −
π2 b c

480 a4
−

ζ(3) (b + c)

16π a3
−

π

96 a2
− R′

IN

(4.7)

where RIN
is given by (3.14) and (3.6):

RIN
= −

π

16

[

c

a2
RIN1

(c/a) +
b

a2
RIN1

(b/a) +
2 c

b2
RIN1

(c/b) +
b c

a3
RIN2

(c/a, b/a)

]

= −
1

4

∞
∑

n=1

∞
∑

ℓ=1

n

ℓ

[

1

a
K1

(

2π n ℓ c/a
)

+
1

a
K1

(

2π n ℓ b/a
)

+
2

b
K1

(

2π n ℓ c/b
)

]

−
b c

8 a3

∞
∑

n=1

∞
∑′

ℓ1,ℓ2=−∞

n3/2 K3/2

(

2π n

√

(

ℓ1 c

a

)2

+

(

ℓ2 b

a

)2 )

[

(

ℓ1 c

a

)2

+

(

ℓ2 b

a

)2
]3/4

.

(4.8)

RIN1
(c/a) means RIN1

is a function of c/a and the prime above the sum means that the

case ℓ1 =ℓ2 =0 is to be excluded from the sum.

The Casimir force contribution from region II is obtained by setting d = 3 in (3.17):

FNII
= −

π

16

3
∑

m=2

m−1
∑

j=1

23−m ξ m−1
1,k2,...,kj

a
k2−1

. . . a
kj−1

(am−1)j+1
Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2)

−
π

16

c

b3
RIIN2

(ℓ1 =0) (4.9)

= −
π2 c

1440 b3
−

ζ(3)

16π

(

1

c2
+

1

2 b2

)

−
c

4 b3

∞
∑

n=1

∞
∑

ℓ=1

(

n b

ℓ c

)3/2

K3/2(2π n ℓ c/b)

where (3.10) with j =2 and m=3 was used to obtain

RIIN2
(ℓ1 =0) =

4

π

∞
∑

n=1

∞
∑

ℓ=1

(

n b

ℓ c

)3/2

K3/2(2π n ℓ c/b) . (4.10)

The Casimir force FN on the piston for Neumann boundary conditions in three dimensions

is obtained by summing FNI
and FNII

:

FN = −
π2 b c

480 a4
−

ζ(3) (b + c)

16π a3
−

π

96 a2
− R′

IN

−
π2 c

1440 b3
−

ζ(3)

16π

(

1

c2
+

1

2 b2

)

−
c

4 b3

∞
∑

n=1

∞
∑

ℓ=1

(

n b

ℓ c

)3/2

K3/2(2π n ℓ c/b)
(4.11)
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Figure 3: 3D plot of Neumann Casimir force FN versus a/c and b/c. The force is in units of 1/c2.

The force is large and negative at small values of a/c and remains negative with its magnitude

decreasing quickly to zero as a/c increases. The value of b/c shifts the magnitude of the force

towards larger values as it increases.

where RIN
is given by (4.8) and R′

IN
≡ ∂RIN

/∂a . Note that the third term in square

brackets in (4.8) depends only on b and c and can be dropped when evaluating R′
IN

. For

the case of a cube (a = b = c), eq. (4.11) yields FN = −0.1380999/c2 . As in two dimensions,

the force FN is negative and ranges from −∞ (in the limit a→0) to 0 (in the limit a→∞).

A 3D plot of FN versus a/c and b/c (in units of 1/c2) is shown in figure 3.

Our exact expression (4.11) looks similar in form to the one derived in [12] and is

in numerical agreement with it. Moreover, in the small a limit, R′
IN

is exponentially

suppressed (exactly zero in the limit a→0) and when b = c, the second row in (4.11) yields

0.0429965/c2 in agreement with the Neumann results in both [7] and [12]. This provides

an independent confirmation of our results.

An alternative expression F alt
N for the Casimir force can be readily obtained by sub-

stituting d = 3 in (3.20) and using (B.6) and (B.11):

F alt
N = −

π

24 a2
−

∂

∂a
R alt

IN
(ℓ1 6= 0)

= −
π

24 a2
+

∞
∑

n=1

∞
∑

ℓ=1

n

4 ℓ

(

2

c
K ′

1(2π n ℓ a/c) +
1

b
K ′

1(2π n ℓ a/b)

)

+
∂

∂ a

[

a c

4 b3

∞
∑

n=1

∞
∑

ℓ1=1

∞
∑

ℓ2=−∞

n3/2 K3/2

(

2π n
√

(ℓ1 a/b)2 + (ℓ2 c/b)2
)

[

(ℓ1 a/b)2 + (ℓ2 c/b)2
]3/4

]

.

(4.12)

The prime above K denotes partial derivative with respect to a. Note that the sum over

ℓ2 includes ℓ2 = 0 (since the sum over ℓ2 contains no prime above it). Equation (4.12) is
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our alternative expression for the exact Casimir force on the piston in three dimensions for

Neumann boundary conditions. It is valid for any values of the lengths a, b and c and yields

the same Casimir force as the original expression (4.11). However, in the argument of the

modified Bessel functions the plate separation a now appears in the numerator making the

alternative expression converge quickly for large a. A long computation with the original

expression when a is large can converge exponentially fast with the alternative expression

and vice versa when a is small. This is a nontrivial case of the a → 1/a duality already

encountered in two dimensions and discussed in general in the last section. Note that we

are free to label the base such that c ≥ b to obtain the best convergence.

5. Summary and discussion

By applying a multidimensional cut-off technique we obtained expressions for the cut-off

dependent part of the Casimir energy for parallelepiped geometries in any spatial dimen-

sion d and showed explicitly that nonrenormalizable hypersurface divergences cancel in

the Casimir piston scenario in all dimensions. We obtained exact expressions for the d-

dimensional Casimir force on a piston for a parallelepiped geometry with massless scalar

fields obeying Dirichlet and Neumann boundary conditions. As an example, we applied

the d-dimensional formulas to the 2D and 3D piston with Neumann boundary conditions.

The two main features of the Casimir piston originally mentioned by Cavalcanti [5] for a

2D rectangular geometry, namely the cancellation of the surface divergences and the nega-

tive Casimir force on the piston, were shown here to hold in all dimensions d and for both

Dirichlet and Neumann boundary conditions. We obtained two different expressions for the

d-dimensional Casimir force. The Casimir energy is clearly invariant under permutations

of the d lengths of the parallelepiped. This symmetry is trivial but its application is very

useful: one can derive alternative expressions for the Casimir force that converge quickly

compared to the original expressions when the plate separation a is large.

It would be interesting to generalize our d-dimensional results to include arbitrary

cross sections and thermal corrections. For scalar fields in three dimensions this has been

recently considered in [12] via the optical path technique. The scalar field results were then

used to obtain the electromagnetic (EM) Casimir energies with perfect metallic boundary

conditions [12]. It would be worthwhile to see how the 3D alternative expressions for

massless scalar fields derived here for Neumann and for Dirichlet elsewhere [8] can be

modified to include thermal corrections. These could then be used to obtain 3D alternative

expressions for the thermal corrections to the EM case.

A. Cut-off dependent and finite parts of the regularized vacuum energy:

periodic, Dirichlet and Neumann boundary conditions

We consider a massless scalar field confined to a d-dimensional parallelepiped region with

arbitrary lengths L1, . . . , Ld obeying periodic, Neumann and Dirichlet boundary conditions.

Our goal is to include the cut-off dependent and finite parts of the vacuum energy regular-

ized via a multidimensional cut-off technique [6]. This appendix naturally divides into two
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parts. We first consider periodic boundary conditions and make use of formulas found in

section 2 and appendix B of [6]. In particular, we determine explicitly the d-dimensional

cut-off dependence in the expression for the regularized vacuum energy. In contrast to di-

mensional or zeta-function regularization, the multidimensional cut-off technique performs

no renormalization. The second part consists of finding the regularized vacuum energy for

the Dirichlet and Neumann cases. This is obtained by summing over the vacuum energy

of the periodic case.

The vacuum energy for periodic boundary conditions regularized using a cut-off λ is

given by [6]

Ẽp (d, λ) = π
∞
∑

ni=−∞
i=1,...,d

√

n2
1

L2
1

+ · · · +
n2

d

L2
d

e
−λ

s

n2
1

L2
1

+ ···+
n2

d

L2
d = −π ∂λ

∞
∑

ni=−∞
i=1,...,d

e
−λ

s

n2
1

L2
1

+ ···+
n2

d

L2
d

= −π ∂λ

(

1+

∞
∑′

n1=−∞

e
−λ

s

n2
1

L2
1 +

∞
∑′

n2=−∞

∞
∑

n1=−∞

e
−λ

s

n2
1

L2
1

+
n2
2

L2
2 + · · ·

+

∞
∑′

nd=−∞

∞
∑

ni=−∞
i=1,...,d−1

e
−λ

s

n2
1

L2
1

+ ···+
n2

d

L2
d

)

= −π

d−1
∑

j=0

∂λ Λj(λ)

where

Λj(λ) ≡

∞
∑′

n=−∞

∞
∑

ni=−∞
i=1,...,j

e
−λ

s

n2

L2
j+1

+
n2
1

L2
1

+ ···+
n2

j

L2
j . (A.1)

The prime on the sum over n means that n = 0 is excluded from the sum. The function

∂λ Λj(λ) can be expressed in the following form [6] (in the limit λ → 0)

∂λ Λj(λ) =
L1 . . . Lj

(Lj+1)j+1

(

2 j+1 ∂λ′

∞
∑

n=1

∫ ∞

0
e
−λ′

q

n2+x2
1 + ···+x2

j dx1 . . . dxj + Rj

)

(A.2)

where λ′ ≡ λ/Lj+1 and L1 . . . Lj is a product of lengths i.e.
∏j

i=1 Li. This product is

defined to be unity for the special case of j = 0. Rj is given by [6]

Rj =

∞
∑

n=1

∞
∑′

ℓi=−∞
i=1,...,j

2 (n Lj+1)
j+1

2

π [(ℓ1 L1)2 + · · · + (ℓj Lj)2]
j+1

4

K j+1

2

(

2π n

Lj+1

√

(ℓ1 L1)2 + · · · + (ℓj Lj)2
)

.

(A.3)

Rj starts at j = 1 (it is zero for j = 0). The functions K(j+1)/2 are modified Bessel functions

and the prime on the sum means that the case where all the ℓi’s are zero is excluded. Via

the Euler-Maclaurin formula, the integral term in the round brackets in (A.2) can be

decomposed into a cut-off dependent term (which diverges as λ → 0) and a finite term
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which is independent of the cut-off (see section 2 of [6]):

2 j+1 ∂λ′

∞
∑

n=1

∫ ∞

0
e
−λ′

q

n2+x2
1 + ···+x2

j dx1 . . . dxj (A.4)

= Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) +
j

λ′j+1
2j π

j−1

2 Γ(
j + 1

2
) −

j + 1

λ′j+2
2j+1 π

j

2 Γ

(

j + 2

2

)

= Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) +
j

λj+1
2j π

j−1

2 Γ

(

j + 1

2

)

(L
j+1

) j+1

−
(j + 1)

λj+2
2j+1 π

j

2 Γ

(

j + 2

2

)

(L
j+1

) j+2 .

Substituting (A.4) into (A.2), the regularized vacuum energy (A.1) for periodic boundary

conditions is given by ( as λ → 0)

Ẽp
L1...Ld

(d, λ) = −π
d−1
∑

j=0

L1 . . . Lj

(Lj+1)j+1

[

Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) + Rj

+
j

λj+1
2jπ

j−1

2 Γ

(

j+1

2

)

(L
j+1

) j+1−
(j + 1)

λj+2
2j+1 π

j

2 Γ

(

j + 2

2

)

(L
j+1

) j+2

]

= −π

d−1
∑

j=0

L1 . . . Lj

(Lj+1)j+1

(

Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) + Rj

)

+(L1 . . . Ld)
d

λd+1
2d π

d+1
2 Γ

(

d + 1

2

)

=
−π

6L1
−

ζ(3)

2π

L1

L2
2

−
π2

90

L1 L2

L3
3

+· · · − R1
π L1

L2
2

− R2
π L1 L2

L3
3

+· · ·

+
d

λd+1
2d π

d+1
2 Γ

(

d + 1

2

)

(L1 . . . Ld) (A.5)

The notation Ẽp
L1,...,Ld

(d, λ) is a compact way of stating that the regularized vacuum energy

Ẽp is a function of the dimension d, the cut-off parameter λ and the lengths L1, . . . , Ld.

The regularized vacuum energy for Dirichlet and Neumann boundary conditions can

be expressed as a sum over the periodic energies Ẽp [8, 24]:

Ẽ(N

D) =
1

2d+1

d
∑

m=1

(± 1)d+m ξ d
k1,...,km

Ẽp
Lk1

,...,Lkm

(m,λ) (A.6)

where the plus and negative signs correspond to the Neumann (N) and Dirichlet (D) cases

respectively. ξ d
k1,...,km

is called the ordered symbol and is defined by [18]

ξ d
k1,...,km

=

{

1 if k1 <k2 <. . .< km ; 1 ≤ km ≤ d

0 otherwise .
(A.7)

The ki’s are positive integers that can run from 1 to a maximum value of d. The ordered

symbol ξ d
k1,...,km

ensures that the implicit summation over the ki’s is over all distinct sets
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{k1, . . . , km} under the constraint that k1 <k2 < · · ·< km. The superscript d specifies the

maximum value of km. Ep
Lk1

,...,Lkm

(λ,m) is obtained from (A.5) by replacing d by m and

L1 by Lk1
, L2 by Lk2

, etc. When substituted into (A.6) one obtains

E(N

D) =
−π

2d+1

d
∑

m=1

(± 1)d+mξ d
k1,...,km

m−1
∑

j=0

Lk1
. . . Lkj

(Lkj+1
)j+1

(

Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) + Rj

)

+
1

2d+1

d
∑

m=1

(± 1)d+m ξ d
k1,...,km

(Lk1
. . . Lkm

)
m

λm+1
2m π

m+1
2 Γ

(

m + 1

2

)

(A.8)

where Rj is now the function (A.3) with L1 replaced by Lk1
, L2 by Lk2

, etc. It is convenient

to define the function

fj
k1,...,kj+1

≡
Lk1

. . . Lkj

(Lkj+1
)j+1

(

Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) + Rj

)

. (A.9)

Using (A.9) and rearranging the limits on m and j, we can express (A.8) in the following

compact form (we write out separately the Dirichlet and Neumann cases)

ẼD =
−π

2d+1

d−1
∑

j=0

d
∑

m=j+1

(−1)d+m ξ d
k1,...,km

fj
k1,...,kj+1

+ ED(Λ) (A.10)

ẼN =
−π

2d+1

d−1
∑

j=0

d
∑

m=j+1

ξ d
k1,...,km

fj
k1,...,kj+1

+ EN (Λ) (A.11)

where the functions ED(Λ) and EN (Λ) are the cut-off dependent terms for the Dirichlet

and Neumann cases respectively obtained from the second row in (A.8) (we now work with

the cut-off Λ ≡ 1/λ instead of λ so that the divergent limit λ → 0 is replaced by Λ → ∞

which is the more customary notation):

ED(Λ) ≡
1

2d+1

d
∑

m=1

(−1)d+m ξ d
k1,...,km

(Lk1
. . . Lkm

)m 2m π
m+1

2 Γ

(

m + 1

2

)

Λm+1(A.12)

EN (Λ) ≡
1

2d+1

d
∑

m=1

ξ d
k1,...,km

(Lk1
. . . Lkm

)m 2m π
m+1

2 Γ

(

m + 1

2

)

Λm+1 (A.13)

Note that in (A.11) the limits on m and j in the double sum have been rearranged compared

to (A.8). We can decompose ξ d
k1,...,km

into a sum of two terms: ξ d−1
k1,...,km−1,d + ξ d−1

k1,...,km
. In

the first term, km is set to its maximum value of d and the implicit sum is over the remaining

ki’s with the maximum value of km−1 equal to d − 1 (hence the superscript d − 1). The

second term contains the remaining implicit summation with the maximum value of km

equal to d − 1 (hence there is a superscript d−1 in the second term as well). For the case

m = d, the decomposition yields only one term ξ d
k1,...,kd

= ξ d−1
k1,...,kd−1,d + 0 since kd can only

be equal to d.
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With this decomposition the sum over m becomes

d
∑

m=j+1

(± 1)d+m ξ d
k1,...,km

=
d

∑

m=j+1

(± 1)d+m
[

ξ d−1
k1,...,km−1,d + ξ d−1

k1,...,km

]

. (A.14)

There are two separate cases to evaluate above: the plus sign (the Neumann case) and the

minus sign (the Dirichlet case). The Dirichlet case has already been calculated in [18] and

the result is
d

∑

m=j+1

(−1)d+m ξ d
k1,...,km

= (−1)d+j+1 ξ d−1
k1,...,kj ,d . (A.15)

For the Neumann case one obtains

d
∑

m=j+1

ξ d
k1,...,km

= ξ d−1
k1,...,kj,d

+ ( ξ d−1
k1,...,kj+1

+ ξ d−1
k1,...,kj+1,d ) (A.16)

+( ξ d−1
k1,...,kj+2

+ ξ d−1
k1,...,kj+2,d ) + . . . + ( ξ d−1

k1,...,kd−1
+ ξ d−1

k1,...,kd−1,d) .

Each pair of round brackets contains the sum of two terms which are equal. For example,

consider the first pair of round brackets (ξ d−1
k1,...,kj+1

+ ξ d−1
k1,...,kj+1,d) . The fact that kj+2 is

equal to d in the second term is irrelevant since the summation over fj
k1,...,kj+1

in (A.11)

ends at kj+1 for a given j. Therefore, ξ d−1
k1,...,kj+1,d is equal to ξ d−1

k1,...,kj+1
. The same logic

applies to the other pairs of round brackets. Equation (A.16) reduces to a recursion relation

d
∑

m=j+1

ξ d
k1,...,km

= ξ d−1
k1,...,kj ,d + 2

d−1
∑

m=j+1

ξ d−1
k1,...,km

= ξ d−1
k1,...,kj ,d + 2

(

ξ d−2
k1,...,kj ,d−1 + 2

d−2
∑

m=j+1

ξ d−2
k1,...,km

)

.

(A.17)

Applying the above recursion repeatedly (another d−j− 2 times) yields

d
∑

m=j+1

ξ d
k1,...,km

=

d
∑

m=j+1

2d−m ξ m−1
k1,...,kj ,m . (A.18)

With (A.18), the double sum in (A.11) can be expressed as

−π

2d+1

d−1
∑

j=0

d
∑

m=j+1

2d−m ξ m−1
k1,...,kj ,m fj

k1,...,kj+1

=
−π

2d+1

d
∑

m=1

m−1
∑

j=0

2d−m ξ m−1
k1,...,kj

fj
k1,...,kj, m

.

(A.19)

The function fj
k1, ..., kj, m

is given by (A.9) with kj+1 equal to m. Substituting (A.19)

into (A.11) yields our final expression for the Neumann regularized vacuum energy

ẼN = E0N
+ EN (Λ) (A.20)
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where the finite part E0N
is given by

E0N
=

−π

2d+1

d
∑

m=1

m−1
∑

j=0

2d−m ξ m−1
k1,...,kj

Lk1
. . . Lkj

(Lm)j+1

(

Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) + RNj

)

. (A.21)

The function RNj
is given by (A.3) with L1 → Lk1

, Lj+1 → Lkj+1
= Lm:

RNj
=

∞
∑

n=1

∞
∑′

ℓi=−∞
i=1,...,j

2 n
j+1

2

π

K j+1

2

(

2π n

√

(

ℓ1
Lk1

Lm

)2
+ · · · +

(

ℓj
Lkj

Lm

)2
)

[

(

ℓ1
Lk1

Lm

)2
+ · · · +

(

ℓj
Lkj

Lm

)2
]

j+1

4

. (A.22)

The Dirichlet case is obtained by substituting (A.15) in (A.10) yielding

ẼD =
π

2d+1

d−1
∑

j=0

(−1)d+j ξ d−1
k1,...,kj

fj
k1, ..., kj , d

+ ED(Λ) . (A.23)

The function fj
k1, ..., kj, d

is obtained by setting kj+1 equal to d in (A.9) yielding the Dirichlet

regularized vacuum energy

ẼD = E0D
+ ED(Λ) (A.24)

where the finite part E0D
is given by

E0D
=

π

2d+1

d−1
∑

j=0

(−1)d+j ξ d−1
k1,...,kj

Lk1
. . . Lkj

(Ld)j+1

(

Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) + RDj

)

. (A.25)

The function RDj
is given by (A.3) with L1 → Lk1

, Lj+1 → Lkj+1
= Ld:

RDj
=

∞
∑

n=1

∞
∑′

ℓi=−∞
i=1,...,j

2 n
j+1

2

π

K j+1

2

(

2π n

√

(

ℓ1
Lk1

Ld

)2
+ · · · +

(

ℓj
Lkj

Ld

)2
)

[

(

ℓ1
Lk1

Ld

)2
+ · · · +

(

ℓj
Lkj

Ld

)2
]

j+1

4

. (A.26)

For j = 0, RNj
and RDj

are defined to be zero and ξ k1,...,kj
and Lkj

are defined to be unity.

The final expressions for the regularized vacuum energy are (A.20) for the Neumann

case and (A.24) for the Dirichlet case with the cut-off dependent parts ED(Λ) and EN (Λ)

given by (A.12) and (A.13) and the finite parts E0N
and E0D

given by (A.21) and (A.25)

respectively.

B. Alternative expressions for the d-dimensional Casimir piston

In section 3 we derived expressions for the Casimir force on the piston. In this appendix

we derive alternative expressions. This is accomplished by labeling the lengths Li in region

I differently compared to section 3. The Casimir energy is invariant under permutation of

lengths so a different labeling does not alter the value of the Casimir energy. However, the

different labeling leads to an expression with a different form.
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In section 3 we labeled the lengths Li in region I as L1 =a1, L2 =a2, . . . , Ld−1 =ad−1

with Ld equal to the plate separation a. We now label Li such that L1 = a,L2 = a1, L3 =

a2, . . . , Ld = ad−1 so that L1 is equal to the plate separation. We do not change the labeling

in region II (i.e. L1 = s − a,L2 = a1, L3 = a2, etc.) so that we only need to obtain new

formulas for region I.

The expressions for the finite part of the Casimir energy are given by (3.1) and (3.3) for

Neumann and Dirichlet respectively. We only keep the a-dependent terms and for region

I this means keeping only those terms with L1 = a. For Neumann, (3.1) divides into two

sums: the j = 0, m = 1 term where Lm = L1 = a appears in the denominator and all other

terms where L1 appears in the numerator (this occurs when k1 = 1 so that Lk1
= a for

j > 0 with the other lengths given by Lkj
= akj−1). This yields (with “alt” as superscript

for “alternative”)

E alt
0NI

(a) = −
π

2d+1

d
∑

m=1

m−1
∑

j=0

2d−m ξ m−1
k1,...,kj

Lk1
. . . Lkj

(Lm)j+1

(

Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) + RNj

)

= −
π

24 a
−

π

2d+1

d
∑

m=2

m−1
∑

j=1

2d−m ξ m−1
1,k2,...,kj

a a
k2−1

. . . a
kj−1

(am−1)j+1
× (B.1)

×

(

Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) + R alt
INj

)

with

R alt
INj

=

∞
∑

n=1

∞
∑′

ℓi=−∞
i=1,...,j

2 n
j+1

2

π

K j+1

2

(

2π n

√

(

ℓ1
a

am−1

)2
+ · · · +

(

ℓj
akj−1

am−1

)2
)

[

(

ℓ1
a

am−1

)2
+ · · · +

(

ℓj
akj−1

am−1

)2
]

j+1

4

(B.2)

For Dirichlet given by (3.3), the case j = 0 does not yield any L1 terms so that it can be

dropped. L1 = a appears only in the numerator via Lk1
= a when k1 = 1 (with the other

lengths given by Lkj
= akj−1). We obtain

E alt
0DI

(a) =
π

2d+1

d−1
∑

j=1

(−1)d+j ξ d−1
1,...,kj

a ak2−1 . . . akj−1

(ad−1)j+1

(

Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) + R alt
IDj

)

(B.3)

with

R alt
IDj

=

∞
∑

n=1

∞
∑′

ℓi=−∞
i=1,...,j

2 n
j+1

2

π

K j+1

2

(

2π n

√

(

ℓ1
a

ad−1

)2
+ · · · +

(

ℓj
akj−1

ad−1

)2
)

[

(

ℓ1
a

ad−1

)2
+ · · · +

(

ℓj
akj−1

ad−1

)2
]

j+1

4

. (B.4)
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The alternative expression for the Casimir force in region I for Neumann is

F alt
NI

= −
∂

∂a
E alt

0NI
(a) (B.5)

= −
π

24 a2
+

π

2d+1

d
∑

m=2

m−1
∑

j=1

2d−m ξ m−1
1,k2,...,kj

a
k2−1

. . . a
kj−1

(am−1)j+1
×

×Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) −
∂R alt

IN

∂a

where

R alt
IN

= −
π

2d+1

d
∑

m=2

m−1
∑

j=1

2d−m ξ m−1
1,k2,...,kj

a a
k2−1

. . . a
kj−1

(am−1)j+1
R alt

INj
. (B.6)

The corresponding alternative expression for Dirichlet in region I is

F alt
DI

= −
∂

∂a
E alt

0DI
(a)

= −
π

2d+1

d−1
∑

j=1

(−1)d+j ξ d−1
1,...,kj

ak2−1 . . . akj−1

(ad−1)j+1
Γ

(

j + 2

2

)

π
−j−4

2 ζ(j + 2) −
∂R alt

ID

∂a

(B.7)

where

R alt
ID

=
π

2d+1

d−1
∑

j=1

(−1)d+j ξ d−1
1,...,kj

a ak2−1 . . . akj−1

(ad−1)j+1
R alt

IDj
. (B.8)

To obtain the Casimir force on the piston we need to add the contribution from region

II: FNII
and FDII

given by (3.17) and (3.18) respectively. For Neumann we obtain

F alt
N = F alt

NI
+ FNII

(B.9)

= −
π

24 a2
−

∂R alt
IN

∂a
−

π

2d+1

d
∑

m=3

m−1
∑

j=2

2d−m ξ m−1
1,k2,...,kj

a
k2−1

. . . a
kj−1

(am−1)j+1
RIINj

(ℓ1 =0)

where RIINj
(ℓ1 = 0) is (3.10) evaluated at ℓ1 = 0. The above can be reduced to a more

compact expression by noticing that the ℓ1 =0 contribution to −∂R alt
IN

/∂a cancels out with

the last term in (B.9). The alternative expression for the Casimir force on the piston for

Neumann boundary conditions reduces to

F alt
N = −

π

24 a2
−

∂

∂a
R alt

IN
(ℓ1 6=0) . (B.10)

To evaluate (B.10) we exclude ℓ1 = 0 in (B.6) so that R alt
INj

given by (B.2) is evaluated

without including ℓ1 =0 i.e.

R alt
INj

(ℓ1 6=0) =
∞
∑

n=1

∞
∑

ℓ1=1

∞
∑

ℓi=−∞
i=2,...,j

4 n
j+1

2

π

K j+1

2

(

2π n

√

(

ℓ1
a

am−1

)2
+ · · · +

(

ℓj
akj−1

am−1

)2
)

[

(

ℓ1
a

am−1

)2
+ · · · +

(

ℓj
akj−1

am−1

)2
]

j+1

4

.

(B.11)
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Compared to (B.2), there is no longer a prime on the sum over ℓi and i starts with the

integer 2 instead of 1. For Dirichlet one obtains

F alt
D = F alt

DI
+ FDII

= −
∂R alt

ID

∂a
+

π

2d+1

d−1
∑

j=2

(−1)d+j ξ d−1
1,k2,...,kj

a
k2−1

. . . a
kj−1

(ad−1)j+1
RIIDj

(ℓ1 =0)

(B.12)

where RIIDj
(ℓ1 =0) is (3.12) evaluated at ℓ1 = 0. The above can also be reduced to a more

compact expression since the ℓ1 = 0 contribution of −∂R alt
ID

/∂a cancels out with the last

term in (B.12). The alternative expression for the Casimir force on the piston for Dirichlet

boundary conditions reduces to the simple expression

F alt
D = −

∂R alt
ID

∂a
(ℓ1 6=0) . (B.13)

To evaluate (B.13) we exclude ℓ1 = 0 in (B.8) so that R alt
IDj

given by (B.4) is evaluated

without ℓ1 =0 i.e.

R alt
IDj

(ℓ1 6=0) =

∞
∑

n=1

∞
∑

ℓ1=1

∞
∑

ℓi=−∞
i=2,...,j

4 n
j+1

2

π

K j+1

2

(

2π n

√

(

ℓ1
a

ad−1

)2
+ · · · +

(

ℓj
akj−1

ad−1

)2
)

[

(

ℓ1
a

ad−1

)2
+ · · · +

(

ℓj
akj−1

ad−1

)2
]

j+1

4

.

(B.14)

Our alternative expression for the Casimir force on the piston for the Neumann case

is F alt
N which is given by (B.10) together with (B.6) and (B.11). For the Dirichlet case the

alternative expression is F alt
D which is given by (B.13) together with (B.8) and (B.14). It

is now trivial to see that in the limit as the plate separation a tends to infinity that the

Casimir force on the piston is zero since the modified Bessel functions and their derivatives

that appear in F alt
N and F alt

D via (B.11) and (B.14) decrease exponentially fast to zero as

a tends to infinity.
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